Proximal Methods with Bregman Distances to Solve VIP on Hadamard manifolds∗

نویسندگان

  • E. A. Papa Quiroz
  • P. Roberto Oliveira
چکیده

We present an extension of the proximal point method with Bregman distances to solve Variational Inequality Problems (VIP) on Hadamard manifolds (simply connected finite dimensional Riemannian manifold with nonpositive sectional curvature). Under some natural assumption, as for example, the existence of solutions of the (VIP) and the monotonicity of the multivalued vector field, we prove that the sequence of the iterates given by the method converges to a solution of the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proximal Point Methods for Quasiconvex and Convex Functions With Bregman Distances on Hadamard Manifolds

This paper generalizes the proximal point method using Bregman distances to solve convex and quasiconvex optimization problems on noncompact Hadamard manifolds. We will proved that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we obtain the same convergence properties for the classical proximal method, applied to a class of quasi...

متن کامل

Proximal Point Methods for Functions Involving Lojasiewicz, Quasiconvex and Convex Properties on Hadamard Manifolds

This paper extends the full convergence of the proximal point method with Riemannian, Semi-Bregman and Bregman distances to solve minimization problems on Hadamard manifolds. For the unconstrained problem, under the assumptions that the optimal set is nonempty and the objective function is continuous and either quasiconvex or satisfies a generalized Lojasiewicz property, we prove the full conve...

متن کامل

Proximal Point Method for a Class of Bregman Distances on Riemannian Manifolds

This paper generalizes the proximal point method using a class of Bregman distances to solve convex and quasiconvex optimization problems on complete Riemannian manifolds. We will prove, under standard assumptions, that the sequence generated by our method is well defined and converges to an optimal solution of the problem. Also, we give some examples of Bregman distances in non-Euclidean spaces.

متن کامل

An inexact proximal algorithm for variational inequalities

This paper presents a new inexact proximal method for solving monotone variational inequality problems with a given separable structure. The resulting method combines the recent proximal distances theory introduced by Auslender and Teboulle (2006) with a decomposition method given by Chen and Teboulle that was proposed to solve convex optimization problems. This method extends and generalizes p...

متن کامل

On the convergence of solutions to a difference inclusion on Hadamard manifolds

‎The aim of this paper is to study the convergence of solutions of the‎ ‎following second order difference inclusion‎ ‎begin{equation*}begin{cases}exp^{-1}_{u_i}u_{i+1}+theta_i exp^{-1}_{u_i}u_{i-1} in c_iA(u_i),quad igeqslant 1\ u_0=xin M‎, ‎quad‎ ‎underset{igeqslant 0}{sup} d(u_i,x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011